On Sharp Constants in Marcinkiewicz-zygmund and Plancherel-polya Inequalities

نویسنده

  • D. S. LUBINSKY
چکیده

The Plancherel-Polya inequalities assert that for 1 < p <∞, and entire functions f of exponential type at most π, Ap ∞ ∑ j=−∞ |f (j)| ≤ ∫ ∞ −∞ |f | ≤ Bp ∞ ∑ j=−∞ |f (j)| . The Marcinkiewicz-Zygmund inequalities assert that for n ≥ 1, and polynomials P of degree ≤ n− 1, Ap n n ∑ j=1 ∣∣∣P (e2πij/n)∣∣∣p ≤ ∫ 1 0 ∣∣P (e2πit)∣∣p dt ≤ B′ p n n ∑ j=1 ∣∣∣P (e2πij/n)∣∣∣p . We show that the sharp constants in both inequalities are the same, that is Ap = Ap and Bp = B ′ p. Moreover, the two inequalities are equivalent. We also discuss the case p ≤ 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poincaré and Plancherel-Polya Inequalities in Harmonic Analysis on Weighted Combinatorial Graphs

Abstract. We prove Poincaré and Plancherel–Polya inequalities for weighted p-spaces on weighted graphs in which the constants are explicitly expressed in terms of some geometric characteristics of a graph. We use a Poincaré-type inequality to obtain some new relations between geometric and spectral properties of the combinatorial Laplace operator. Several well-known graphs are considered to dem...

متن کامل

Marcinkiewicz-Zygmund inequalities

We study a generalization of the classical Marcinkiewicz-Zygmund inequalities. We relate this problem to the sampling sequences in the Paley-Wiener space and by using this analogy we give sharp necessary and sufficient computable conditions for a family of points to satisfy the Marcinkiewicz-Zygmund inequalities.

متن کامل

2 Joaquim Ortega - Cerdà and Jordi

We study a generalization of the classical Marcinkiewicz-Zygmund inequalities. We relate this problem to the sampling sequences in the Paley-Wiener space and by using this analogy we give sharp necessary and sufficient computable conditions for a family of points to satisfy the Marcinkiewicz-Zygmund inequalities.

متن کامل

On Marcinkiewicz-Zygmund-Type Inequalities

We investigate the relationships between the Marcinkiewicz-Zygmund-type inequalities and certain shifted average operators. Applications to the mean boundedness of a quasi-interpolatory operator in the case of trigonometric polynomials, Jacobi polynomials, and Freud polynomials are presented.

متن کامل

On Marcinkiewicz-zygmund Inequalities at Jacobi Zeros and Their Bessel Function Cousins

Marcinkiewicz-Zygmund Inequalities involving the zeros {xkn} of Jacobi polynomials for the weight wα,β can take the form

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014